
Is genome written in Haskell?
S.V. Kozyrev, Steklov Mathematical Institute

Approach ”genome as a program” using functional programming
— genome is a functional program.

Functional programming — parallelism, simple system of states
allows easy modification of programs (error control).

Comparison to biology — parallelism of processes in cells and in
evolution, random modifications of genetic program in evolution
usually do not break the program immediately.

Darwinian evolution — generation of programs by data
— machine learning.

Learning problems for functional programming.

Gene regulation — monadic computations
Lac operon — IO monad

Gibbs distribution and scaling: genomics, Zipf’s law

Scaling in sizes of families of paralogous genes, scaling in metabolic
networks and networks of interacting genes (scale free graphs).

E.V.Koonin: genome is a ”gas of interacting genes”, scaling should
be related to Gibbs distribution for this model.

Yu.I.Manin: model of statistical mechanics with Hamiltonian equal
to Kolmogorov complexity (”Complexity as Energy”) — Gibbs
distribution should give the Zipf’s scaling law for distribution of
words in texts.

S.K.: These two approaches can be unified if biological evolution is
a model of temperature learning with regularization equal to
estimate for Kolmogorov complexity.

Yu. I. Manin, Complexity vs energy: theory of computation and
theoretical physics, Journal of Physics: Conference Series 532
(2014) 012018. arXiv:1302.6695

E. V. Koonin, The Logic of Chance: The Nature and Origin of
Biological Evolution, FT Press, 2012.

Y.I. Wolf, M.I. Katsnelson, E.V. Koonin, Physical foundations of
biological complexity, PNAS, 115:37 (2018) E8687.

S.V. Kozyrev, Biology as a constructive physics, p-Adic Numbers,
Ultrametric Analysis and Applications, 10:4 (2018), 305–311.
arXiv:1804.10518

S.V. Kozyrev, Learning problem for functional programming and
model of biological evolution, p-Adic Numbers, Ultrametric
Analysis and Applications, 12:2 (2020), 112–122.

S.V. Kozyrev, Genome as a functional program, Lobachevskii
Journal of Mathematics, 41:12 (2020), 2326–2331.
arXiv:2006.09980

Biology:

Molecules are linear polymers (proteins and nucleic acids) —
strings of symbols, state of a system — set of strings with
multiplicity (multistring). S — set of multistrings.

Chemical reactions — transformations of multistrings local in
substrings (gluing, cuttings, substitutions, duplications, other
multistring editing operations). Physical transformations (transfer
of molecules) — changes of multiplicities of strings in multistrings.

Genome — set of genes, each gene defines a transformation of
multistrings. Each gene is represented by a string, genome is a
multistring.

Genes as transformations operate in parallel.

Biological evolution — transformation of genomes as multistrings
by a set of genome editing operations.

Gene gk as a function S → S is multivalued. Example: gk may cut
a string at the position of substring uv

u′uvv ′ 7→ u′u + vv ′,

string may contain several such substrings and gk can act to
different strings in a multistring.

Genome — list G = [g1, . . . , gn] of genes is a multivalued function
S → S : any function gk in the list can be applied to v ∈ S .

Genome as a functional program is defined recursively by
genome as a list of functions G = [g1, . . . , gn] (genes)

G̃ = G̃ ◦ G = [G̃ ◦ g1, . . . , G̃ ◦ gn]. (1)

Functional programming
— lambda calculus, Haskell programming language

A. Church, A set of postulates for the foundation of logic, Annals
of Mathematics. Series 2. 33 (2), 346–366 (1932).

J. Backus, Can Programming Be Liberated from the von Neumann
Style? A Functional Style and its Algebra of Programs, Comm.
ACM 21 (8), 613–641 (1978).

M. Lipovaca, Learn You a Haskell for Great Good!: A Beginner’s
Guide, No Starch Press, 2011.

Some notations from Haskell
Class of types Functor contains method fmap

fmap :: (a -> b) -> f a -> f b

Example: list functor

a->[a]

fmap f [a1,...,an] = [f a1,...,f an]

Applicative functors: supports operations pure and <*>.

class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

For the list functor

pure :: a -> [a]

<*>: applications of functions from the left list to elements of the
right list

[(*0),(+100),(2)] <*> [1,2,3] = [0,0,0,101,102,103,1,4,9]

Genome as a program (1) is defined by recursive application of list
of functions as applicative functor.

Monads — applicative functors supporting the bind operation

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Example:

[1,2] >>= \x -> [x,-x] = [1,-1,2,-2]

Lac operon. Operon is a group of simultaneously transcribed
genes with the same promoter and terminator of transcription.
Lac operon contains CAP binding site, promoter, operator, three
structural genes and termination of transcription (as situated in
the DNA). Structural genes encode two enzymes and transport
protein for lactose. Transcription is initiated depending on
concentrations of lactose and glucose. For this aim two proteins
binding to regulatory segments of the operon are used: lac
repressor (sensor of lactose) and Catabolite activator protein
(CAP), sensor of glucose. Presence of two sensors allows to start
expression of structural genes in the case of simultaneous presence
of lactose and absence of glucose.

Description of lac operon as monadic IO operation in Haskell–like
syntax:

main = do

glucose <- sensorofglucose

lactose <- sensoroflactose

if not glucose && lactose

then return (structuralgene1

structuralgene2

structuralgene3)

else return()

Functions glucose and lactose return boolean values for operations
of input–output (which check presence of glucose and lactose
correspondingly) and structural gene 1, 2, 3 perform operations of
expression of corresponding genes.

This function in absence of glucose and presence of lactose
expresses structural genes and for the case else performs return()
i.e. returns empty tuple.

Empty tuple acts as identity transformation in the space S of
objects (sets of molecules).

Expression of structural genes for genome as a program can be
understood as action of transformations performed by structural
genes (by proteins encoded by these genes).

Monadic operation return (put value in context) is given by
binding of regulatory molecules to binding sites in corresponding
operons.

Metabolic network as a reduction graph
Let v0 ∈ S be a multistring (”reasonable” in biological sense). Let
us define a graph Γ

G̃
for the program G̃ :

Step 0) We start from vertex v0.

Step 1) Let us apply G to v0, any gk ∈ G can be applied to v0.
Let us include to the graph all vertices obtained from v0 by
multivalued map G (we identify vertices which coincide as
multistrings), the obtained vertices are connected to v0 by edges.

Step 2 etc.) By recursion let us apply to obtained at the previous
step vertices multivalued map G . Let us include to the graph Γ

G̃
all vertices and edges obtained in this way (again, we identify
vertices which coincide as multistrings). Iteration of the process
gives graph Γ

G̃
.

Some genes gk in G correspond to transfer operations which
change multiplicities of some strings in a multistring. These
operations allow to close metabolic cycles in the graph.

To a gene g in the genome G we put in correspondence the pair of
non-negative numbers r+(g), r−(g) — transition rates of
corresponding direct and reverse reactions. These rates define a
system of kinetic equations for distribution functions on vertices of
the graph Γ

G̃
— transitions with rates r+(g), r−(g) along and

against edges corresponding to genes. Let us assume that for this
system of kinetic equations there exists a unique stationary state
f
G̃

, moreover the solution of the system tends to f
G̃

. This
distribution describes nonequilibrium thermodynamics of a
biological system.

Functional A(f) of biological function — some linear functional of
distribution f (v) on vertices of the graph. Example: the functional
of current along the edge v1v2 with rates r+ and r− along and
against the edge (from v1 to v2 and against) which equals to
r+f (v1)− r−f (v2). Different edges v1v2 corresponding to the same
gene may be related to the same chemical reaction. To obtain the
complete current one has to sum up values r+f (v1)− r−f (v2) over
all such edges. A(f

G̃
) — current in the stationary state.

Remarks
The program G̃ is highly parallel. The parallelism in operation of
genome can be described by the Haskell syntax of applicative list
functor (list of genes — list of functions).

Correctness of operation of metabolic networks is related to
Church–Rosser property for lambda calculus (in different order of
application of genes one can obtain the desired result).

The program G̃ for a genome loops — this describes cycles in the
metabolic network Γ

G̃
.

Gene regulation — changing values r+(g), r−(g) we will change
the stationary state f

G̃
and contributions to the functional A(f

G̃
)

from different metabolic pathways.

Physically gene regulation works by regulatory and signal molecules
which regulate expression of genes.

Analog in functional programming — monads (computations with
effects, modification of states, input/output operations —
interaction with the environment).

Activation of the lac operon changes the graph Γ
G̃

of the program
and stationary distribution f

G̃
(i.e. the distribution f

G̃
and the

graph Γ
G̃

itself are context–dependent).

Another mechanism of gene regulation: epigenetics — genome
methylation, histone code, folding of chromatin.

Any gene gk in a genome G = [g1, . . . , gn] is encoded by some
biological sequence, i.e. gene gk is a string and a genome G is a
multistring in S .

Biological evolution — action of ”evolutionary program” Ẽ with
”evolution genes” E = [e1, . . . , em] (operations of editing of
genomes) defined recursively

Ẽ = Ẽ ◦ E = [Ẽ ◦ e1, . . . , Ẽ ◦ em]. (2)

Evolution transforms genomes to genomes (as multistrings),
transforms rates r+(g), r−(g) for genes, the stationary state f

G̃
and functional A(f

G̃
) of biological function.

Difference between evolution (2) and genome (1) programs — the
evolution does not support monads (analogs of gene regulation).

The evolution is blind.

Darwinian evolution — machine learning (generation of a
program by data). Machine learning was proposed by A.Turing, he
also mentioned analogy to Darwinian evolution.

A. M. Turing, Can machines think? Computing Machinery and
Intelligence. Mind 49: 433–460 (1950).

Problem of machine learning — minimization over the space of
parameters of the sum of the loss (or risk) functional and the
regularization functional

H(s, data) = R(s,data) + Reg(s,data)→ min .

Overfitting — low value of the risk functional at a training sample
and high value of risk at a control sample.
Regularization is important to control overfitting (by reducing
entropy of the space of parameters s, see VC–theory).

V.N. Vapnik, The Nature of Statistical Learning Theory, Springer,
1995.

Temperature learning — instead of minimization we compute
the statistical sum (β > 0 is the inverse temperature)

Z =
∑
s

e−βH(s).

In the zero temperature limit β →∞ problem of computation of Z
becomes the problem of minimization of H (temperature learning
becomes standard learning).

Critical behavior: the functional H(α, s) = R(s) + αReg(s), α > 0
and statistical sum Zα =

∑
s e
−βH(α,s).

large α — the statistical sum converges
small α — the statistical sum diverges due to summation over
space of large entropy (with suitable regularization)

Let us consider divergence of Zα as a criterion of overfitting in the
learning problem — in the high temperature (small α) regime the
statistical sum Zα ”melts” and becomes divergent — values of
parameter s which contribute to Zα are not restricted to a space of
limited entropy (as in the regime with overfitting in the learning
problem).

Ideas of machine learning in evolution — regularization by estimate
of Kolmogorov complexity to control overfitting.
Universal scaling in genomics can be explained by universal
regularization by complexity in the corresponding learning
problems.

Zipf’s law — scaling explained by complexity as energy model with
critical temperature (Yu.I.Manin). Learning at the edge of
overfitting.

Temperature learning for functional programs
Let us consider the evolution program Ẽ of the form (2) with
genome editing operations E = [e1, . . . , em] and reduction graph
Γ
Ẽ

(G0) where G0 is the ancestor genome (vertices are
descendants).

Let us put in correspondence to action of evolution operation ek a
weight (positive number) K (ek) and to oriented path p between
vertices u and v in the graph Γ

Ẽ
(G0) (path from ancestor to

descendant) we put in correspondence the action functional — the
sum of weights of edges in the path

K
Ẽ

(p) =
∑

k∈p:u→v

K (eik). (3)

This functional can be considered as the cost of computation along
the path p or weighted estimate for Kolmogorov complexity of
generation of v from u.

Let us define Darwinian evolution as the temperature learning
problem with inverse ”evolution temperature” β′ with statistical
sum

Z [Ẽ ,G0] =
∑

G∈Γ
Ẽ

(G0)

A(f
G̃

)
∑

p∈Path(Γ
Ẽ

(G0)):G0→G

e−β
′K

Ẽ
(p). (4)

G0 — the ancestor genome;
G ∈ Γ

Ẽ
(G0) — descendant genomes;∑

G — summation over descendants G ;
A(f

G̃
) — functional subject to selection (selection pressure);

K
Ẽ

(p) — evolution effort to generate a descendant from the
ancestor along evolution path p;∑

p — summation over paths of evolution with the same ancestor
and descendant (retinal evolution).

This statistical sum is concentrated at genomes with large
functional A(f

G̃
) (for example selection for large current

functional).
Summation over paths describes parallelism in evolution
(computation of typical functional A(f

G̃
) includes summation over

paths which describes parallelism in metabolism). Gibbs factor
e−β

′K
Ẽ

(p) of the action functional reduces the complexity of
evolution operations which contribute to the statistical sum of
evolutionary program. This corresponds to regularization by
complexity as energy and makes Darwinian evolution possible
(without this term we will get divergence which corresponds to
overfitting in the learning problem).

Nondeterministic algorithm is described by a Nondeterministic
Turing Machine (NTM) which at some steps of computation can
duplicate and perform several branches of computation (this gives
brute-force search).
Programs (1), (2) which describe operation and evolution of
genomes are programs for NTM since G and E are multivalued
functions and recursive application of multivalued functions
generate many branches of computation.
We propose to consider parallelism in biology (parallelism of
processes in cells and in evolution) as a manifestation of
nondeterministic algorithms. Biological processes correspond to
nondeterministic computations and Darwinian evolution is a
temperature learning problem for a functional nondeterministic
algorithm.

Summary

Genome as a functional program (1) is defined recursively by the
list of genes as applicative functor. Metabolic network is related to
the reduction graph of this program. Parallelism of processes in cell
and in evolution can be described by nondeterministic algorithms.

Gene regulation is described by monadic computation where
monadic context is given by regulatory molecules bound to binding
sites of corresponding operons. Lac operon is the IO monad.

Darwinian evolution by selection is a temperature learning problem
for nondeterministic functional program (2) given by the statistical
sum (4). This statistical sum contains regularization to avoid
overfitting in the form of Gibbs factors of the action functional (3)
of complexity as energy and describes scaling laws in genomics.

Genome can be described by a program with functional
architecture written in Haskell–like language

Learning problem for functional programming is introduced

